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A horizontal gyrocompass which has a sensing element on a stabilized hori- 
sontal PlatfWm aligning Itself along a meridian blp means of a correcting 
device, may be called a corrigible horizontal gyrocompass. 

Here we investigate one of the possible designs of a corrigible horisontal 
gyrocos@ass whose sensing element is a gyrosphere of a conventional two-rotor 
gyrocompass; the center of gravity of the gyrosphere coincides with its geo- 
metric center. The correcting device produces the turning moments [lf on the 
corresponding axe8 of the gyrosphere and on the axis of the casing of one of 
the gyroscopes inside the gyrosphere. 

1. The equations of motion of a gyrosphere [2 and 33 whose center of gra- 

vity coincides with its geometric center in the geographical system of refer- 

ence have the following form (1.1) 

f 2Bcos(e---6) sin p] + 2B cas fe -8)(u,cosucos~+u,sina~os~)=~~ 

2Bcos(~-~)(u’cos~+u,sinusin~-~~cos~sin~+u~cos~)=M,~ 
[2Bcos(e-A}]'= M, 

2B sin (e - 6) (a’ sin @ $7’ - ~~sinacos~+u~cosacos~+~~sin~)= 

= x sin 6 cos 6 - M,, 

Equations (1.1) describe the motion of a gyrosphere with respect to the 
CnC coordinate system (Flg.l), whose origin is in the geometric center of 
the gyrosphere, the C-axis Is along the Earth’s radius, and the q and n 
axes are horizontal and pointing, respectively, to the east and to the north. 
Let a, g and 

1 
be the Eulerisn angles, detersi%nung the orientation of 

the gyrosphere w th respect to the gq< axes. Resides, the angle a is 
the angle of rotation of the gyrosphere about the c-axis, B 3.2 the angle 
of rotation about the negative section of the line of nodes , and y is 
the angle of rotation of the gyrosphere about Its s-axis. 

between the spin axes of the gyroscopes Inside the gyrosphere 
At equilibrium, when the rotors do not spin, the angle 

between their ax& is 2e, and 6 is the angle of rotation of one of the 
gyrosoopes about gr wh%ch is the axis of its casing. Since the casings of 
both gyroscopes are connected by an antiparallelogram, the angle of rotation 
of the casing of the second gyroscope equals - b . The middle link of the 



antlparallelogram ls connected with the Internal surface of the gyrosphere 
by Spring8 Of rigidity K . 

Fig. 1 

In Equations (1.1) the angular momentum of 
eaoh of the ~IW ldentioal gyroscopes inside the 
gyrosphere 1s B ) and the components of the 
instantaneous angular velocity of the coordl- 
nate tetragon fqc am uI , up , us. The 
northern and the eastern componepts of ship’s 
veZoclty with respect to the Ead&'s sphere 
aI'eVNaMiv 

1" 
. The angular velocity of the 

Earth’s rotat on ia U , the latitude of the 
ship is 

$’ 
the Earth’s radius Is A . Tne 

moments o the exter&or forces applied to the 
system are MC, fiZ,*, M, and MV, 

Since the instrument Is on a stabilized 

horisontal platform the angles 8 end y 

whloh the t- and the x-axes of the gyrosphere 

fPig.1) make with the horizontal plane are 

measurable. 

The angle between the horizontal projection of the a-axis of the gyro- 

sphere and the ship’s velocity vector v (Fig.11 with respect to the Earth’s 

sphere equals I + c , where $ is the course of the ship. Slnce the angle 

) + c is measurable, therefore if we have an instrument determlnlng the 

velocity of the ship with respect to the Earth’s sphere we can determine the 

velocity components of the ship u cos ($ + a) and u sin ($ + u). Knowing 

the latitude of the ship QJ , we can apply to the gyrosphere the correcting 

turting moments 

cos (9 + a) cos ft--p.k’ sin p, M, = - K sin r 

Mx.=-ZBcose +-sin(g+a)sinp+ (1.2) 

+2BcosE[Usincp+ +-sin($+-a)-cpl cosQ + Ksinp 

The correct- turning moment about br, which is the axis of the gyro- 

scope’s casir$ is assumed to be 

M - -2Bsin*[Ucosq+$-sin(II,+a)lcos@- Y1 - (1.3) 

-2Bsin.e [U sincp + $- sirt.($ 4 a) bqfsinp j-crKsin~ 

Here g,~ , K and o are constant coefficients. It is natural to assume 

that the lattltude of the ship g < g0”. 

TakAng Into account that (1.4) 

vcos($+a) = vNcos&-uEsin$ vsin($+a)== VECoSafvNsina 

(~N=u~~~l/), VE=Vsin*) 

and substituting (1.2) into (l-3) we shall reduce Equations (1.1) to 

(H* sin p)’ + (H* - H) (-$ cosacosp + 2 sin u cos p ) + 

+-H*UcoscpsinacosP+@sinp=O 



N*a’ GOS p - H”U cos ‘p ~0s a sin f3 + 

-(II*--H)(--$sinasinf3--- ~~osasinp+Usincpcospj+H* -~+~fpcosp 

-f+n cpcosacosp-H $~~cpsinacosp--Ksinp=O 

H*‘+Ksiny=O 

Ei* (a’ sin p + 7’) -xsindcos6 f 

+ (a* - 8) (J$ sina cosP + ~cosacos~-i_Usintpsin~ + 
1 

+E”Ucosg,cosacos~-~evGOSfpCOS~ + z,” ~~~~i~~ - 

-8 VE 
~~qcosasinfS-- E~u.cpsinasinfl+&siny= 0 (1.5) 

(R* = 2B cos (e - a), N = 2B cos e, E* = 2B sin (e - 8), E = 2B sin e) 

It is easily seen that the system of differential equations (1.5) has the 

particular solution 
a=+y=(j=() (1.6) 

In this way, even at 8 most arbitrary motion of the ship v = v(t) the 

equilibrium direction of the s-axis of the gyrosphere is north. This means 

that the velocity deviation of 8 corrigible gyrocompass equals zero. 

A gyrocomp888 works satisfactorily only when its oscillations about Its 

positions of equilibrium a = $ = y = 6 = 0 are damped. The equations for 

the variations, are obtained from (1.5) by assuming that the angles a, %, 

y and (I are small and have the form 

2, Since UN = UN (tf, z&! = 7?E (t), Q, = cp (t), then Equations (1.7) 

form a system of linear differential equations with variable coefficients. 

The sufficient conditions of 8n asymptotic stability of the particular 

solution (1.6) which determines the position of equll.lbrlum (more properly 

the steady motlon) of a gyrocon418ss we find from the Liapunov function, which 

can be constructed by the uethod presented in c&3. Denoting 

fl(q = +-P, fz(t)=Ucosfp, P,(t)=+-[Usincp +Gmq) 

F,(t)=g$, P,(t)=qUcosq+~) (2.1) 



we shall reduce Equatlona (1.7) to the form 

a’ - + P = fl (t) a + fz (t) P -F, (t> 6 

P’ + $f P + A-U = [s - fz (t) I a + F, (t) 6 

r’ + $ r - + 6 = Fs (t) 6, tY++o (2.2) 

We shall select the coefficient 8 in the second equation of (2.2) in 
such a way that the system of differential equations 

3’ - + p = 0, p’+$3+S,=o 
H (2.3) 

will have the characteristic equation 

~~IEz~fSK=O 
- H H (2.4) 

with the pair of complex roots 

A,, hz = &l f io,, PK q = g --El2 
( ) 

‘1% 
El = - 2H, 

In thle case the coefficient 8 should satisfy the lnequallty 

s > pzK. I 4H 

(2.5) 

(2.6) 
Let us mention that the coefficient 8 la not a parameter of the system, 

but its selection 141 determines the subsequent tranaformatlon from the old 

to the new variables and parameters of the Llapunov function, which result 

from this transformation. 

We shall select the parameters X, o and p to satisfy the condition 

x > l/&K (2.7) 
Besides, the differential equations 

r’ + og r - + 6 = 0, Is++0 

will have the characteristic equation 

A2+Q+Xg = 0 

with the pair of complex roots 

A,,A,=~~-lt~i (e,=-g, 02 = ($-~2)‘“) 

Let us Introduce the new variable xl,..., Z, through 

(2.8) 

(2.9) 

(2.10) 

From (2.11) follows that 

x,=a, x,=-$u + $3, xp= - + 8 (2.12) 

By (2.2) the new variables xl,..., r,, will satisfy the following system 
of differential equations: 
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23’ = E2X3 - Lb12 + & F3(t)] 24, X4’ = 0LX3 + E2X4 

The Llapunov function Is the negative-definite function 

v = --'/2i~12 + 3Ga + p33 + p”a2) (P>O) 

(2.13) 

(2.14) 

By (2.13) Its time derivative, has the form 

V' = allxJa + 2%x1x2 + 2~~s + 2a14w4 + a22%a + ~~&-%s + %&&% + 

+ a33x32 + 2a34w4 + a44x4a (2.15) 
where 

a,,=+ + fl @) + q f2 @)I 

al2 = jj- {z fl (.t) - SK (~1” - e?) f2 (t) - sH is -j2 (t)l} 

a13 = 0, al4 = - & Fl (0, 
Y 

aa = - el[ 1 - + f2 (t)l 

. a23 = 0, a 24 = B o1, K [‘W)+ $F2 (t)] 

~33 = pa33*, a34 = pa34*, a44 = pa44*, a33 
*_ 

- - 6 
I 

a34 *= -&F3(t), a44* = -82 (2.16) 

By the theorem of Sylvester, the quadratic form (2.15) Is positive-defblb? 

If at any Instant of time t the principal diagonal minors of its dlscrlml- 

nant 
all a12 0 44 

an a22 0 a21 

D = 0 0 a38 aa (2.17) 

014 a24 a34 a44 

are positive. 

The conditions for having the principal diagonal minors of the dlscrlml- 

nanf (2.17) positive Is 

all> 0, A = allaS -a12' >O, a3s* >O 

pA*A f asa* (2alaa14a24 -a142a22 --~224~Ull)>O (A* =a&a~* -a@) (2.18) 

It is easily seen that If the conditions 
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all> 09 A >O, as3* > 0, A* > 0 (2.19) 

are satisfied, then the last condition In (2.18) can be satisfied by choosing 

the coefficient p sufficiently large. In Expression (2.15) the coefficient 

p Is not fixed. 

Thus, the Inequalities (2.19) can be regarded as conditions which, If 

satisfied, make the principal diagonal minors of the dlscrlmlnant posltlve. 

The Inequalities (2.19) should be satisfied at any Instant of time t 

and represent the sufficient conditions of the asymptotic stability of the 

equilibrium position (1.6) of a horizontal gyrocompass. 

3. If in the Initial equations (1.1) we set e = 0, ‘y z 0, 8 z 0 and If 
we also assume that ln (1.2) and (1.3) the correcting moments are jMt~ 0, 
Mv, E 0, then we shall get the equations of motion of a corrigible gyrocom- 
pass with one rotor, Investigated prevlou%ly ln [5]. 

With the correcting moments MC and M,., determined respectively by (1.2), 
the position of equilibrium of a corrigible gyrocompass wltli one rotor [5] 
Is at 

a = 0, /3=0 (3.1) 

which means that In this instrument, as In the previously discussed horlzon- 
tal gyrocompass, the velocity deviation 1s zero. 

The equations for variations with respect to the position of equlllbrlum 
(3.1) for a gyrocompass with one rotor are [5] 

+ u eoecp) p = 0, (3.2) 

and can be obtained from (1.7) If we substitute In these equations y z 0, 
6rO. 

The sufficient conditions of stability at the position of equilibrium 
(3.1) of a gyrocompass with one rotor [5] 

a11 0) > 0, a11 0) =a, @I - Ia12 (Q12 > 0 (3.3) 

where all, aI,, aaz are determined by (2.17), follow directly from the obtained 
previously sufficient conditions of stability (2.19). 

4. As an example we shall consider a horizontal gyrocompass whose para- 
meters are 

K 
H ~3.6~~~-*, p=O.O05, $ =I, -+ =O.OO~~SEC-~, a=O.Od 

The coefficient s , which determines the transformation (2.2) and the 
parameters (2.6) In the Llapunov f%nctlon Is assumed to be s = 4.1O-6 set-k 

With these parameters the sufficient condition of stability (2.20) Is 
satisfied at all points inside the rectangular paralleleplped 

Here 
IcPI\((Pmt Iv~16V~,9 1 ‘E 1 f ‘E,,, 

q+,,= 85", 
v%l =600m s&l, VE = 6OOm sed' m (4.1) 

Consequently, this corrigible horizontal gyrocompass can be used In avia- 
tion, as described In Cl]. 

Let us mention that since cp'- U, /R, the latitude of the ship Is 
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0 
In this nay the position of equilibrium of a horizontal gyrocompass pre- 

serves the asymptotic stability even If-the compass moves arbitrarily with 
on the condition that vN (t), u&t) and cp (t) are 
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