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A horizontal gyrocompass which has a sensing element on a stabilized hori-
sontal platform aligning itself along a meridian by means of a correcting
device, may be called a corrigible horizontal gyrocompass.

Here we investigate one of the possible designs of a corriglble horisontal
gyrocompass whose sensing element 1s a gyrosphere of a conventional two-rotor
gyrocompass; the center of gravity of the gyrosphere coincides with its geo-
metric center. The correcting device produces the turning moments [1] on the
corresponding axes of the gyrosphere and on the axis of the casing of one of
the gyroscopes inside the gyrosphere.

1. The equations of motion of a gyrosphere [2 and 3] whose center of gra-
vity coincldes with its geometric center in the geographical system of refer-
ence have the following form (1.1)

[2B cos (e — 8) sin B}’ -+ 2B cos (e — 8) (u, cosa cosP 4 ussina cosB) = My

2B cos (e — 6) (o' cos B + u, sinasin B —u, cosasinf -} ugcosB) = M-
[2B cos (e — 8)) = M,

2Bsin (e —8) (¢’ sinB + v — u; sina cosB 4 u, cosa cosB -+ ugsinf) =
= xsindcosd — My,

v VE . ’E
(u1=-—7’?, ug=Ucos@+ -7 » us:—Usmq)—i——Iqu)}

Equations (1.1) describe the motion of a gyrosphere with respect to the
gn{ coordinate system {(Fig.1), whose origin 1s in the geometric center of
the gyrosphere, the (=-axis is along the Earth's radius, and the g and n
axes are horizontal and pointing, respectively, to the east and to the north.
Let ¢, 8 and be the Eulerlan angles, determinung the orientation of
the gyrosphere with respect to the &n{ axes. Besides, the angle o 1is
the angle of rotation of the gyrosphere about the (-axis, g 1s the angle
of rotation about the negative section of the line of nodes x* , and vy 1s
the angle of rotation of the gyrosphere about its z-axis,

The le between the spin axes of the gyroscopes inside the gyrosphere
equals ag%€ — 8). At equilibrium, when the rotors do not spin, the angle
between their axes 1s 2¢, and § 48 the angle of rotation of one of the
gyroscopes about j; which is the axis of 1ts casing. Since the casings of
both gyroscopes are connected by an antiparallelogram, the angle of rotation
of the casing of the second gyroscope equals — & . The middle link of the

856



A corrigible horisontal gyrocompass 857

antiparallelogram is connected with the internal surface of the gyrosphere
by springs of rigidity «x .

In Equations {1.1) the angular momentum of
each of the two identical gyroscopes inside the
gyrosphere 1is p , and the components of the
instantaneous angular velocity of the coordi-
nate tetragon E&n{ are wu; , Uy , us. The
northern and the eastern componenta of ship's
velocity uith respect to the Earth's sphere
are Uy . The angular velocity of the
Earth's rotat on is U , the latitude of the
ship 1is , the Earth's radius is8 » . The
moments of the exterlor forces applied to the
system are My, M., M, and M

Since the instrument 1s on g stabllized
horizontal platform the angles g8 and v
which the »- and the x-axes of the gyrosphere
Fig. 1 {Fig.1) make with the horizontal plane are
measurable.

The angle between the horizontal projection of the z-axis of the gyro-
sphere and the ship's velocity vector v (Fig.l) with respect to the Earth's
sphere equals § + q , where § 1s the course of the ship. Since the angle
¥ + o 18 measurable, therefore if we have an instrument determining the
veloelity of the ship with respect to the Earth's sphere we can determine the
velocity components of the ship v cos (y +a) and » sin (y + ). Knowing
the latitude of the ship o , we can apply to the gyrosphere the correcting
turning moments

My = ——2Bcosa—% cos (P + o) cosB—pK sinB, M, = — Ksiny
Mx:=—2Bcose%sin (P + o) sinB 4 (1.2)
+2Bcose{Usin ¢ -+ %— sin (P 4 a) hn(p] cosB + Ksinf

The correcting turning moment about y, which is the axis of the gyro-
scope's casing is assumed to be

M, = —2B sine[U cos<p—}--%sin (\b-{—a)]cosﬁ—— (1.3)
— 2B sine [U sin @ - % sin (P + a) iu(p]sinB 4 sK siny

Here u , ¥ and ¢ are constant coefficlents. It 1s natural to assume
that the lattitude of the ship g < 90°.

Taking into account that (1_4)
veos (P a)=vycosa —vgsina, wsin(P 4 a)=vgcosa 4 vysina
(vy=vcosP, vy =2vsiny)

and substituting {1.2) into (1.3} we shall reduce Equations {1.1) %o

(H* sin B) + (H* —H) (—% cos & cos P 4 %—sina cos B) +-
4+ H*U cos @ sinacosB 4+ pKsinB=0
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H*a' cos — H*U cosgeosasinf -+
—-(H*-~H)(—-——smas1n3—«Mco'%o&smB—{—Usm(pcosB)%—H* s uncpcoq{&
—HZE mcpcosacosﬁ Hmnnq:smoccosB — Ksinf=0

H¥ 4+ Ksiny =0

E*(@'sinB+7)—unsindcosd +
v v

+ (B* — 8) > sina cos B + —ZEcosa cosB -+ U sin ¢ sin
R R

v
-+ E*U cos @ cosa cos P — EU cosgeos B - Z* ?Euncpsinﬁ——

v v
——ETEmcpcosocsinB—E-Rly-m(psinasinB—}—cKsinT:O (1.9)

(H* =2Bcos{e-—§), H=2Bcose, E*=2Bsin(e —§), E=2Bsine)

It 1s easily seen that the system of differential equations {1.5) has the
ticular solution
par a=B=p=8=0 (1.8)

In this way, even at a most arbitrary motion of the ship v = w(¢) the
equilibrium direction of the z-axis of the gyrosphere 1s north. This means
that the velocity deviation of a corrigible gyrocompass equals zero.

A gyrocompass worke satisfactorily only when its oscillations about its
positions of equilibrium ¢ — ﬁ =y = 8 = 0 are damped. The equations for
the variations, are obtained from (1.5) by assuming that the angles a, 8,
vy and & are small and have the form

v

K \ = . Vg
a ——Ig—vtmq)am(-g —§—Ucoscp)8+%—(Usmcp—§——§unfp)§=O
B—i— B—}—Ucoscpoc—— ENs=0 (t.7)
v e ywm[qu—H(Ucoscp—!— )}GMO 5’—[——g—7=0

2. Since py = vy {f), vg = vg (), = @ (£), then Equations (1.7)
form & system of linesar differential equations with varlable coefficlents,

The sufficlent conditions of an asymptotic stability of the particular
solution (1.6) which determines the position of equilibrium (more properly
the steady motion) of a gyrocompass we find from the Liapunov function, which
can be constructed by the method presented in [4]. Denoting

f(t) = -—-un(p, f2 (¢ =Ucosg, F, (t)::-ﬁ-([/ sin @ +-ﬁ«mcp)

F,(t) m%—— FAt):%(Ucosw%—%) (2.1)
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we shall reduce Equations (1.7) to the form
o — L B=fi(t)o+ /2 (()B—Fi(t) §
B+ X8 su = (s —fa (1) e+ Fa () 8
v+ Ky Le=F(ns, ¥+ Ky=0 (2.2)

We shall select the coefficlent g 4in the second equation of (2.2) in
such a way that the system of differential equations

a————B 0, PB+E KB tsa=0 (2.3)
will have the characteristic equation
1 BK sk _
LN W S (2.4)
with the pair of complex roots
. K sK s
?"11 7"2 =& j:lmh &= — l;_I:Ir O = (? —612> (25)
In this case the coefficlent g should satisfy the inequality
s >uK /| 4H (2.6)

Let us mention that the coefficient z 18 not & parameter of the system,
but its selection [4] determines the subsequent transformation from the old
to the new variables and parameters of the Liapunov function, which result
from this transformation.

We shall select the parameters x, ¢ and » to satisfy the condition

% >1,5*K (2.7)
Besides, the differential equations
oK % K
T'+—E-T—_E—6=O, 6'+§"(=0 (2.8)
will have the characteristic equation
oK ®K
AN+ =A+5=0 (2.9)
with the pair of complex roots
, oK ®K 2 2.10
A], A2=82j:(1)21 (ezz——'—z-é" w2=<§'—822) ) ( )
Let us introduce the new variable X590+, X4 through
aH i H K
o= I, B—l— 1+ = 1 Ly Y = 0223 + €274, 6=—‘—5—x4 (2.11)
From (2.11) follows that
- —__ & K _ = — 2 8 (21
Z, =, -’fvz—-—m—la‘}—mpy 963——7+sz Zy= z 0 (2.12)

By (2.2) the new variables x,,..., x,, Will satisfy the following system
of differential equations:



860

Ia.N.Roitenberg

x' = e+ 1 (8) L@t o [t4 4 £ 0)]5+ £ Fit)e,

xz’z—'—{ml——a—%[s /2() + — [fl (t) + — EIH /2 t)J} Ty -+
+elt— 4 h (t)]x;.—%[sl F, (1)~ 51—[17172(0]354

’ K
Ty = EoX3 — [(,)2 -+ w_z§F3(t)] T4, z) = 0,25 + €054 (2.13)
The Llapunov functlon 1s the negative-definite function
. 1/ .2
V=—lh@"+ 2+ pz +pzd)  (p>0) (2.14)
By (2.13) its time derivative, has the form
V' = anz,® 4 2a::2,2: + 2a,52,23 + 20147124 + 09970 + 2093707y + 2a94%2%4 +

+ assxs® + 2a54%574 + AT} (2.19)

where

any =-—[81 + fu(t) + & EIH fe (t)]

an = 3 {2 1)) — g @F —ed) fu(t) — g [s—Fa ()]}
ap =0, ay=— 7§F1 (t), a“=—81[1———-—f2 (t)]
G5 =0, @y = 2% [T?I Fi(t)+ 5{% F, (t)]
Ogg = pa?s*, Agq = pa34*, G4 = pag”*, az® = —¢,
Agy* = 20)2;, s—=F3(t), au* = —¢, (2.16)

By the theorem of Sylvester, the quadratic form (2.15) is positive-definite

if at any instant of time ¢ the principal diagonal minors of its discrimi-
nant

an a2 0 as
a1z a2 0 ay

D=10 0 o au (2.17)

Q114 424 a3z Au
are positive.

The conditions for having the principal diagonal minors of the discrimi-
nant (2.17) positive 1s

a; > 0, A=apa,;— aig® >0, az* > 0
PA*A + agg* (2013014024 — 142020 — Gog?a11) >0 (A* = ag*as* — an*?)  (2.18)

It is easily seen that if the conditions
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a; >0, A>O0, ags* >0, A*>0 (2.19)
are satisfied, then the last condition in (2.18) can be satisfled by choosing

the coefficient p sufficiently large. In Expression (2.15) the coefficient
p 1s not flxed.

Thus, the inequalities (2.19) can be regarded as conditions which, 1if
satisfied, make the principal diagonal minors of the discriminant positlive.

The inequalities (2.19) should be satisfied at any instant of time ¢
and represent the sufficient conditions of the asymptotic stability of the
equilibrium position (1.6) of a horizontal gyrocompass.

3, If in the initial equations (1.1) we set e =0, y=0, § =0 and if
we also assume that in (1.2) and (1.3) the correcting moments are M, = 0,
Al% = 0, then we shall get the equations of motion of a corrigible gyrocom-
pass with one rotor, investigated previcusly in [5].

With the correcting moments M, and M,,, determined respectively by (1.2),
the position of equilibrium of a corrigible gyrocompass with one rotor [5]
1s at
o =0, =0 @.1)
which means that in this instrument, as in the previously discussed horlzon-
tal gyrocompass, the velocity deviation is zero.

The equations for variations with respect to the position of equilibrium
(3.1) for a gyrocompass with one rotor are [5]

a’—%mwa—<%+Ucosq>>B=0, B’—}--}%(—B-I—Ucoscpa:O (3.2)

and can be obtained from (1.7) if we substitute in these equations vy=0,
d=0 .

The sufficlent conditions of stability at the position of equilibrium
(3.1) of a gyrocompass with one rotor [5]

an () >0, ay; () ayg (&) — [a )P >0 (3.3

where 4ajy, 013, @32 are determined by (2.17), follow directly from the obtained
previously sufficlent conditions of stability (2.19).

4, As an example we shall consider a horizontal gyrocompass whose para-
meters are

K H
"F‘ =3.8 sec-l, Qo= 0005, —é— = '1,

m|x

= (0,0016sec’?, ¢=0.04

The coefficient g , which determlnes the transformation (2.2) and the
parameters (2.6) in the Liapunov function 1s assumed to be s = 4-10~5 sec’l.

With these parameters the sufficient condition of stability (2.20) is
satisfied at all points inside the rectangular parallelepiped

l‘Pl<‘Pm, lle<va1 lvEI<vEm
Here
Py = 85°% VN, = 600m sec?, Vg, = 600m sec™? (4.1)

Consequently, this corrigible horizontal gyrocompass can be used in avia-
tion, as described in [1].

Let us mention that since ¢’= v,/F, the latitude of the ship is
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t
vy (T)
e =0+ | TFdr (4.2)
0
In this way the position of equilibrium of a horizontal gyrocompass pre-
serves the asymptotic stabllity even if ‘the compass moves arbitrarily with
velocity function y = v (), on the condition that vy (), vy, (f) and ¢ (1) are
inside the region {“.1).
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